Andrew Morris Group Website

Main Page

From Andrew Morris Group Website

Jump to: navigation, search
Andrew J. Morris Group
Joseph, Iria, Can, James, Jamie, Martin, Matthew, Andrew, Paulo, Bora
Group within Department of Physics.
(Joseph, Iria, Can, James, Jamie, Martin, Matthew, Andrew, Paulo, Bora)


Main Article: Andrew Morris

This is Andrew Morris' group website. We are members of the School of Metallurgy and Materials at the University of Birmigham.

Our research group is also affiliated with the Theory of Condensed Matter Group in the Cavendish Laboratory and Maxwell Centreat the University of Cambridge and the Department of Physics at the University of Warwick. Below gives a brief overview of our main research themes, us the navigation section on the left hand side to find out about the research group and our publications amongst other things.

Contents

Recent News

Main article: News

Andrew.png December 2017: Andrew writes a blogpost for the Birmingham Energy Institute on Next Generation Batteries

There is urgent need for new battery materials with superior performance to present technologies. Incremental improvements in manufacturing and processing cannot provide the increase in capacities, cycle rates and lifetimes currently demanded of them. From the small (battery-on-a-chip or sensor for the “Internet of Things”), medium (pervasive electric vehicles) to large scale (grid-level storage for renewable energy sources) next-generation batteries, a disruptive change is required.

The full text may be found here.

Csd3.jpg November 2017: Andrew, Bora and Matthew are awarded a 4 MCPUh computing grant

The grant, "Ab Initio Structure Prediction For Next-generation Battery Materials", provides resources on the new EPSRC Tier-2 supercomputer CSD3, hosted in Cambridge, which recently placed as the fastest academic supercomputer in the UK (#75 on the top500).

Mayo jacs.gif November 2017: PhD Studentship Available in the Group

Deadline 12th January 2018. More details here.

Angela.jpg October 2017: Congratulations to Angela, winner of the 2017 LeRoy Apker Award from the APS!

The citation states that the award is "for significant contributions to printed electronics research and outstanding leadership of the Society of Physics Students and Society of Women in STEM fields." More information can be found on the APS website.

BHam Crest.png October 2017: Andrew is appointed to Senior Birmingham Fellow at the University of Birmingham.

The Group's centre of operations moves to Birmingham, UK.

Research

Main Article: Research

Energy Storage

The Phases of lithium germanide found using computational structure prediction

We have a long running collaboration with Prof Clare Grey and Prof Chris Pickard using the ab initio random structure searching method to predict the stable phases of electrodes that occur as a lithium-ion battery charges.

Over the course of the project we have found new phases of lithium silicides, lithium germanides, lithium phosphides and lithium sulphides, including new defect and high-pressure phases.

Point-defects

{H,Si} defect in silicon

We are interested in the atomic and electronic structure of impurities in batteries, semiconductors and ceramics. Using AIRSS we predict the low energy structures at various impurity concentrations. We have various ways to include entropy into the final results.

This work is mainly in collaboration with Prof Richard Needs in Cambridge. We also have fruitful collaborations with Prof Neil Allan at the University of Bristol and Dr Dorothy Duffy at University College London.

Theoretical Spectroscopy

Density of Electronic States of a Boron Nitride nanoribbon Courtesy of Dr. C Lynch.

In collaboration with Prof Jonathan Yates and Dr Rebecca Nicholls at the University of Oxford we author the OptaDOS code. OptaDOS is a code for calculating optical, core-level excitation spectra along with full, partial and joint electronic density of states (DOS). At present OptaDOS interfaces with CASTEP and ONETEP output files, although it is extendible to perform calculations on any set of band eigenvalues and their derivatives generated by any electronic structure code.

Encapsulation in Nanotubes

In collaboration with Drs David Quigley and Jeremy Sloan at the University of Warwick. We predict the structure of tiny crystals that can form inside carbon nanotubes.

This is a rather new project. Pretty pictures will follow in due course.