MEICA: Difference between revisions
No edit summary |
No edit summary |
||
(4 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
==About== | |||
MEICA is the '''''M'''ulti-'''E'''cho '''I'''ndependent '''C'''omponent '''A'''nalysis'' package created by Prantik Kundu during his PhD at Cambridge. It can be applied to fMRI datasets that have been acquired with at least 3 different echo times (TE). The working principle behind MEICA is that genuine BOLD signal depends on TE but artifacts don't. The ICA part of MEICA is used to define a set of components which are individually classified as BOLD or non-BOLD based on their TE dependence (quantified using two variables ''kappa'' and ''rho''). See [http://dx.doi.org/10.1016/j.neuroimage.2011.12.028 Kundu et al 2012]. | |||
Please refer to the [https://bitbucket.org/manfredg/me-ica Bitbucket repository] for the source code and all the gory implementation details. | |||
==Usage== | |||
<code> | <code> | ||
Usage: meica.py [options] | Usage: meica.py [options] | ||
Line 64: | Line 66: | ||
--OVERWRITE If meica.xyz directory exists, overwrite. | --OVERWRITE If meica.xyz directory exists, overwrite. | ||
</code> | </code> | ||
==Example== | |||
A typical meica invokation might look like this: | |||
<code> | |||
python -u ~/me-ica/meica.py -d "rest_e[0,1,2].nii.gz" -e 15,34,54 -a mprage.nii.gz --qwarp --space /usr/local/afni/MNI152_T1_2009c+tlrc --fres=2.33 --cpus=12 2>&1 | tee my_meica.log | |||
</code> | |||
===Arguments explained=== | |||
; -d "rest_e[0,1,2].nii.gz" | |||
:input files rest_e0.nii.gz rest_e1.nii.gz rest_e2.nii.gz | |||
; -e 15,34,54 | |||
:echo times TE in milli-seconds for the three input files respectively | |||
; -a mprage.nii.gz | |||
:anatomical image of the same subject for co-registration | |||
; --qwarp --space /usr/local/afni/MNI152_T1_2009c+tlrc | |||
:will use the lores MNI152 template that comes with afni as reference space into which the output is warped | |||
; --fres=2.33 | |||
:resample to 2.33mm iso voxel size | |||
; --cpu=12 | |||
:use parallel processing for warping and the internal PCA and ICA calculations | |||
; | tee my_meica.log | |||
: save output to my_meica.log while also writing it out to the terminal | |||
==See also== | |||
The actual component identification is performed by the [[Tedana|tedana.py]] subroutine which is called from within [[MEICA|meica.py]] at the end of the afni based preprocessing. |
Latest revision as of 16:55, 1 April 2016
About
MEICA is the Multi-Echo Independent Component Analysis package created by Prantik Kundu during his PhD at Cambridge. It can be applied to fMRI datasets that have been acquired with at least 3 different echo times (TE). The working principle behind MEICA is that genuine BOLD signal depends on TE but artifacts don't. The ICA part of MEICA is used to define a set of components which are individually classified as BOLD or non-BOLD based on their TE dependence (quantified using two variables kappa and rho). See Kundu et al 2012.
Please refer to the Bitbucket repository for the source code and all the gory implementation details.
Usage
Usage: meica.py [options]
Options:
-h, --help show this help message and exit
-e TES ex: -e 14.5,38.5,62.5 Echo times (in ms)
-d DSINPUTS ex: -d RESTe1.nii.gz,RESTe2.nii.gz,RESTe3.nii.gz
-a ANAT ex: -a mprage.nii.gz Anatomical dataset (optional)
-b BASETIME ex: -b 10s OR -b 10v Time to steady-state
equilibration in seconds(s) or volumes(v). Default 0.
--MNI Warp to MNI space using high-resolution template
Additional processing options:
--qwarp Nonlinear anatomical normalization to MNI (or --space
template) using 3dQWarp, after affine
--fres=FRES Specify functional voxel dim. in mm (iso.) for
resampling during preprocessing. Default none. ex:
--fres=2.5
--space=SPACE Path to specific standard space template for affine
anatomical normalization
--no_skullstrip Anatomical is already intensity-normalized and skull-
stripped (if -a provided)
--no_despike Do not de-spike functional data. Default is to de-
spike, recommended.
--no_axialize Do not re-write dataset in axial-first order. Default
is to axialize, recommended.
--mask_mode=MASK_MODE
Mask functional with help from anatomical or standard
space images: use 'anat' or 'template'
--coreg_mode=COREG_MODE
Coregistration with Local Pearson and T2* weights
(default), or use align_epi_anat.py (edge method): use
'lp-t2s' or 'aea'
--smooth=FWHM Data FWHM smoothing (3dBlurInMask). Default off. ex:
--smooth 3mm
--align_base=ALIGN_BASE
Explicitly specify base dataset for volume
registration
--TR=TR The TR. Default read from input dataset header
--tpattern=TPATTERN
Slice timing (i.e. alt+z, see 3dTshift -help). Default
from header. (N.B. This is important!)
--align_args=ALIGN_ARGS
Additional arguments to anatomical-functional co-
registration routine
--seed=SEED Seed used for ICA. Default 42.
--ted_args=TED_ARGS
Additional arguments to TE-dependence analysis routine
Run options:
--prefix=PREFIX Prefix for final ME-ICA output datasets.
--cpus=CPUS Maximum number of CPUs (OpenMP threads) to use.
Default 2.
--label=LABEL Label to tag ME-ICA analysis folder.
--test_proc Align and preprocess 1 dataset then exit, for testing
--script_only Generate script only, then exit
--pp_only Preprocess only, then exit.
--keep_int Keep preprocessing intermediates. Default delete.
--skip_check Skip dependency checks during initialization.
--OVERWRITE If meica.xyz directory exists, overwrite.
Example
A typical meica invokation might look like this:
python -u ~/me-ica/meica.py -d "rest_e[0,1,2].nii.gz" -e 15,34,54 -a mprage.nii.gz --qwarp --space /usr/local/afni/MNI152_T1_2009c+tlrc --fres=2.33 --cpus=12 2>&1 | tee my_meica.log
Arguments explained
- -d "rest_e[0,1,2].nii.gz"
- input files rest_e0.nii.gz rest_e1.nii.gz rest_e2.nii.gz
- -e 15,34,54
- echo times TE in milli-seconds for the three input files respectively
- -a mprage.nii.gz
- anatomical image of the same subject for co-registration
- --qwarp --space /usr/local/afni/MNI152_T1_2009c+tlrc
- will use the lores MNI152 template that comes with afni as reference space into which the output is warped
- --fres=2.33
- resample to 2.33mm iso voxel size
- --cpu=12
- use parallel processing for warping and the internal PCA and ICA calculations
- | tee my_meica.log
- save output to my_meica.log while also writing it out to the terminal
See also
The actual component identification is performed by the tedana.py subroutine which is called from within meica.py at the end of the afni based preprocessing.