Tedana: Difference between revisions
From Brain Mapping Unit
Jump to navigationJump to search
No edit summary |
mNo edit summary |
||
(One intermediate revision by the same user not shown) | |||
Line 1: | Line 1: | ||
==About== | |||
Tedana stands for '''''TE D'''ependency '''ANA'''lysis'' and is the main workhorse of the MEICA package. | Tedana stands for '''''TE D'''ependency '''ANA'''lysis'' and is the main workhorse of the MEICA package. | ||
==Usage== | |||
<code> | <code> | ||
Usage: tedana.py [options] | Usage: tedana.py [options] | ||
Line 32: | Line 34: | ||
--seed=SEED Seed used for ICA. Default 42. | --seed=SEED Seed used for ICA. Default 42. | ||
</code> | </code> | ||
==Example== | |||
A typical tedana invokation might look like this: | |||
<code> | |||
python -u ~/me-ica/meica.libs/tedana.py -d zcat_ffd.nii.gz -e 12,28,44,60 --seed=1 | |||
</code> | |||
===Arguments explained=== | |||
; -d zcat_ffd.nii.gz | |||
:input file zcat_ffd.nii.gz is a spatially concatenated ME dataset produced by the meica.py preprocessing | |||
; -e 12,28,44,60 | |||
:echo times TE in milli-seconds matching the four concatenated input files in zcat_ffd.nii.gz | |||
; --seed=1 | |||
:use a specific seed for the random number generator - asserts that the ICA components are reproducible | |||
==See also== | |||
The [[Tedana|tedana.py]] subroutine is called from within [[MEICA|meica.py]] at the end of the afni based preprocessing. |
Latest revision as of 16:56, 1 April 2016
About
Tedana stands for TE Dependency ANAlysis and is the main workhorse of the MEICA package.
Usage
Usage: tedana.py [options]
Options:
-h, --help show this help message and exit
-d DATA, --orig_data=DATA
Spatially Concatenated Multi-Echo Dataset
-e TES, --TEs=TES Echo times (in ms) ex: 15,39,63
--mix=MIXM Mixing matrix. If not provided, ME-PCA & ME-ICA (MDP)
is done.
--manacc=MANACC Comma separated list of manually accepted components
--kdaw=KDAW Dimensionality augmentation weight (Kappa). Default
10. -1 for low-dimensional ICA
--rdaw=RDAW Dimensionality augmentation weight (Rho). Default 1.
-1 for low-dimensional ICA
--conv=CONV Convergence limit. Default 2.5e-5
--sourceTEs=STE Source TEs for models. ex: -ste 2,3 ; -ste 0 for all,
-1 for opt. com. Default -1.
--denoiseTE=E2D TE to denoise. Default middle
--initcost=INITCOST Initial cost func. for ICA:
pow3,tanh(default),gaus,skew
--finalcost=FINALCOST
Final cost func, same opts. as initial
--stabilize Stabilize convergence by reducing dimensionality, for
low quality data
--noignored Remove ignored components from denoised timeseries as
well.
--fout Output TE-dependence Kappa/Rho SPMs
--label=LABEL Label for output directory.
--seed=SEED Seed used for ICA. Default 42.
Example
A typical tedana invokation might look like this:
python -u ~/me-ica/meica.libs/tedana.py -d zcat_ffd.nii.gz -e 12,28,44,60 --seed=1
Arguments explained
- -d zcat_ffd.nii.gz
- input file zcat_ffd.nii.gz is a spatially concatenated ME dataset produced by the meica.py preprocessing
- -e 12,28,44,60
- echo times TE in milli-seconds matching the four concatenated input files in zcat_ffd.nii.gz
- --seed=1
- use a specific seed for the random number generator - asserts that the ICA components are reproducible
See also
The tedana.py subroutine is called from within meica.py at the end of the afni based preprocessing.