Tedana: Difference between revisions
From Brain Mapping Unit
Jump to navigationJump to search
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
Tedana stands for '''TE | Tedana stands for '''''TE D'''ependency '''ANA'''lysis'' and is the main workhorse of the MEICA package. | ||
<code> | <code> |
Revision as of 16:17, 1 April 2016
Tedana stands for TE Dependency ANAlysis and is the main workhorse of the MEICA package.
Usage: tedana.py [options]
Options:
-h, --help show this help message and exit
-d DATA, --orig_data=DATA
Spatially Concatenated Multi-Echo Dataset
-e TES, --TEs=TES Echo times (in ms) ex: 15,39,63
--mix=MIXM Mixing matrix. If not provided, ME-PCA & ME-ICA (MDP)
is done.
--manacc=MANACC Comma separated list of manually accepted components
--kdaw=KDAW Dimensionality augmentation weight (Kappa). Default
10. -1 for low-dimensional ICA
--rdaw=RDAW Dimensionality augmentation weight (Rho). Default 1.
-1 for low-dimensional ICA
--conv=CONV Convergence limit. Default 2.5e-5
--sourceTEs=STE Source TEs for models. ex: -ste 2,3 ; -ste 0 for all,
-1 for opt. com. Default -1.
--denoiseTE=E2D TE to denoise. Default middle
--initcost=INITCOST Initial cost func. for ICA:
pow3,tanh(default),gaus,skew
--finalcost=FINALCOST
Final cost func, same opts. as initial
--stabilize Stabilize convergence by reducing dimensionality, for
low quality data
--noignored Remove ignored components from denoised timeseries as
well.
--fout Output TE-dependence Kappa/Rho SPMs
--label=LABEL Label for output directory.
--seed=SEED Seed used for ICA. Default 42.